LETTER TO THE EDITOR The Stabilization of β -Bi₂O₃ by CeO₂

X. L. Chen and W. Eysel¹

Mineralogisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany

Communicated by J. M. Honig, May 28, 1996; accepted September 18, 1996

The subsolidus phase relations of the binary system Bi_2O_3 -CeO₂ have been investigated. It was found that CeO₂ forms neither a compound nor a solid solution with Bi_2O_3 . CeO₂, however, can stabilize β -Bi₂O₃ over a wide composition range. The stabilization depends on the contents of CeO₂ as a second phase and on the heat treatment. A stabilization mechanism is proposed. © 1996 Academic Press, Inc.

The tetragonal modification of bismuth oxide, β -Bi₂O₃, forms at about 920 K (1-3) on cooling the cubic hightemperature phase δ -Bi₂O₃. It is metastable at low temperatures with respect to the monoclinic α -Bi₂O₃ and transforms to this phase at about 870 K (1). It should be mentioned that at low temperatures metastable β -Bi₂O₃ can be obtained by the thermal decomposition of Bi₂O₃CO₂ (1). Moreover, a number of nonstoichiometric phases (known as β^*) can be stabilized by various oxides as in the systems Bi_2O_3 -TeO₂ (4, 5), Bi_2O_3 -Sb₂O₃ (6), Bi_2O_3 - $TiO_{2}(7), Bi_{2}O_{3}-Y_{2}O_{3}(7), Bi_{2}O_{3}-HfO_{2}(8), Bi_{2}O_{3}-Ln_{2}O_{3} TeO_2$ (*Ln* = La, Sm, Gd, Er) (9), Bi_2O_3 -PbO-PbF₂ (10), and Bi_2O_3 -PbF₂ (11). In all these cases, the stabilization is due to the incorporation of the added cations into the Bi₂O₃ structure, forming solid solutions. In the present paper it is shown that β -Bi₂O₃ can be stabilized by CeO₂ over a wide composition range in the system Bi₂O₃-CeO₂. The stabilization mechanism is probably different from other cases in not forming solid solutions.

In the system of $\frac{1}{2}$ Bi₂O₃–CeO₂ a series of samples with molar fractions x = 0.05, 0.08, 0.09, 0.10, 0.12, 0.15, 0.20, 0.50, 0.75, and 0.80 CeO₂ were prepared by solid state reaction of appropriate amounts of Bi₂O₃ (Heraeus, 99.999%) and CeO₂ (Heraeus, 99.9%). The powders were carefully mixed, put in a corundum or a platinum crucible, fired at 820°C for 3 to 5 days in air, and finally quenched to room temperature. The X-ray powder diffraction (XRPD) patterns showed that all these samples consist of multiphase mixtures, one of the phases always being CeO₂. The crucible materials have no influence on reactions. Figure 1 shows the XRPD patterns for samples with x = 0.08, 0.12, and 0.15. The phase relations of the system Bi₂O₃-CeO₂ obtained by quenching are shown in Fig. 2a. Three different regions can be distinguished. Region I ($0 \le x \le 0.08$) contains α -Bi₂O₃ and CeO₂; region II ($0.8 < x \le 0.15$) exhibits three phases, α -Bi₂O₃, β -Bi₂O₃, and CeO₂. Finally, in region III (x > 0.15) β -Bi₂O₃ and CeO₂ are observed.

It should be noted that the phase relations in Fig. 2a do not represent an equilibrium state, since no three-phase field can exist in a binary system. The boundaries of the regions (Fig. 2a) are temperature dependent. The relations obtained by long time annealing at 400°C are shown in Fig. 2b. The β -Bi₂O₃ phase in region II transforms to α -Bi₂O₃ so that α -Bi₂O₃ + CeO₂ are found within $0 \le x \le 0.15$. Region III x > 0.15 remains unchanged with β -Bi₂O₃ + CeO₂.

To determine the lattice parameters, the XRPD data were collected by step scanning with steps of $0.02^{\circ} 2\theta$ and counting times >10 s per step. NBS RSM640 Si was added as internal standard. It was found that the lattice parameters of β -Bi₂O₃ are independent of the CeO₂ concentration with $a = 7.741 \pm 0.002$ Å and $c = 5.634 \pm 0.001$ Å. These values are in good agreement with those previously reported for pure β -Bi₂O₃ (12, 13). For α -Bi₂O₃ and CeO₂, the lattice parameters are also independent of the compositions within similar estimated standard deviations (± 0.002 Å, or $2\theta = \pm 0.01^{\circ}$) and are in good agreement with the known values (14).

The persistence of CeO₂ in all samples and the constant lattice parameters of α -Bi₂O₃, β -Bi₂O₃, and CeO₂ indicate that there exists no measurable solid solutions in the binary system Bi₂O₃-CeO₂ under the conditions of the present investigation. This is also evident from the fact that in the sample with 5% CeO₂ the phase CeO₂ was clearly observed. Additional evidence is that there is no change of reflection intensities of CeO₂ after β converts into α by long time

¹ To whom correspondence should be addressed.

FIG. 1. XRPD patterns for compositions $(BiO_{1.5})_{1-x}(CeO_2)_x$, (a) x = 0.08; (b) x = 0.12, (c) x = 0.15. The peaks marked by "+" are due to CeO₂. Note the CeO₂ reflection (200) and α -Bi₂O₃ reflections (-122) and (121) overlap at about $2\theta = 33.05^{\circ}$.

annealing even in the sample for x = 0.15, where β dominates before annealing.

To explain the stabilization of β -Bi₂O₃ by CeO₂, two rather different explanations may be considered. First, β -Bi₂O₃ could be stabilized by the incorporation of CeO₂ into Bi₂O₃ in amounts too small to be detected by the methods applied. Second, Bi₂O₃ is stabilized just by the presence of the phase CeO₂. The latter explanation appears more probable to the authors and, therefore, is presented subsequently in more detail.

It is based on the crystal structural relationship of β -Bi₂O₃ and CeO₂. β -Bi₂O₃ exhibits an ordered fluoritetype structure with lattice parameters a = 7.741 Å and c = 5.563 Å. The ordering along [110] of β -Bi₂O₃ suggests $a_c \approx \sqrt{2}/2a_t \approx 5.47$ Å, which is close to $a \approx 5.41$ Å of the

FIG. 2. Phase relations in the system $BiO_{1.5}$ -CeO₂ (a) quenched from 820°C and (b) annealed at 400°C for 1 week.

fluorite type CeO₂. Hence, CeO₂ may act as an extrinsic nucleus for the formation of β -Bi₂O₃. The growth of β -Bi₂O₃ on the surface of CeO₂ grains probably lowers its free energy of formation compared to that of "normal" α -Bi₂O₃ below 870 K. On cooling, δ -Bi₂O₃ first transforms into β -Bi₂O₃, and some of the β grains grow on the surface of CeO₂ particles. On further cooling, these grains will keep the β structure, while those without a CeO₂ core will transform into α -Bi₂O₃ below 870 K. The transformation from β to α depends obviously on both the amount of CeO₂ and the cooling procedure. If this model applies, CeO₂ would be a good substrate to grow thin films of β -Bi₂O₃.

It is interesting to compare Ce⁴⁺ with other cations with respect to their influence on Bi₂O₃. The small tetravalent ions $M^{4+} = \text{Si}^{4+}$, Ti⁴⁺, and Ge⁴⁺ form as stable phases no solid solutions but only stoichiometric compounds Bi₁₂ MO_{20} with the Sillenite structure, which contains these ions as ordered MO_4 tetrahedra (15–18). Other ions with different valencies and sizes such as Zn²⁺, Pb²⁺, B³⁺, Al³⁺, Zr⁴⁺, and P⁵⁺ from solid solution ranges with γ -Bi₂O₃ structure (19). Hence, Ce⁴⁺ seems exceptional in forming neither an ordered Sillenite phase nor a γ -Bi₂O₃-type solid solution. Instead, it stabilizes β over a wide composition range.

Finally, we did not find the fluorite-type solid solution as reported by Hund (20) in the system Bi_2O_3 -CeO₂ with 0 to 40 mol% Bi_2O_3 .

ACKNOWLEDGMENTS

This work was supported by the Alexander von Humblodt-Stiftung, the China Natural Science Foundation, and the International Centre for Diffraction Data.

REFERENCES

- 1. E. M. Levin and R. S. Roth, J. Res. Natl. Bur. Stand. A 68, 189 (1964).
- 2. H. A. Harwig and A. G. Gerards, Thermochim. Acta 28, 121 (1979).
- 3. G. von Gattow and D. Schütze, Z. Anorg. Allg. Chem. 328, 44 (1964).
- 4. B. Brit, M. Jaymes, G. Perez, and P. Hagenmuller, *Rev. Chim. Min.* 8, 453 (1971).
- L. A. Demina, B. A. Dolgich, and B. A. Poperkin, *Dokl. Akad. Nauk.* SSSR 244, 94 (1979).
- M. Miyayama, H. Terada, and H. Yanagida, J. Am. Ceram. Soc. 64, C-19 (1981).
- J. Ducke, M. Trömel, D. Hohlwein, and P. Kizler, Acta Crystallogr. Sect. C 52, 1329 (1996).
- A. G. Leyva and M. A. R. de Benyacar, *Solid State Commun.* 99, 451 (1996).
- 9. D. Mercurio, M. El Farissi, and B. Brit, *Solid State Ionics* **39**, 297 (1990).
- 10. A. Tairi, Rev. Chim. Min. 21, 680 (1984).
- 11. S. Horiuchi and K. Uchida, J. Am. Ceram. Soc. 68, C-220 (1985).
- 12. J. W. Medernach and R. L. Snyder, J. Am. Ceram. Soc. 61, 494 (1978).
- 13. S. K. Blower and C. Greaves, Acta Crystallogr. Sect. C 44, 587 (1988).

- 14. ICDD-PDF 41-1149 (α-Bi₂O₃); 34-394 (CeO₂).
- G. A. Bobonas, E. A. Zhogova, V. G. Zaretskii, G. A. Kurbatov, Y. I. Ukhanov, and Y. V. Shmartser, *Sov. Phys. Solid State* 24, 921 (1982).
- W. Schrimm, S. Wies, and W. Eysel, "Stable and Metastable Sillenites and Tetravalent Cations," Abstract Book, Third European Powder Diffraction Conference (EPDIC III), Wien, 1993.
- 17. W. Schrimm, S. Wies, and W. Eysel, "Sillenites with Tetravelent

Cations: Stoichiometry and Solid Solutions," Collected Abstracts, SMP-93, IUCr XVI, Hangzhou, 1993.

- S. Wies, "Kristallchemie des Systems Bi₂O₃-CdO-GeO₂," Heidelberg *Geowiss. Anh.* 65, (1993) (Ph.D. dissertation, University of Heidelberg).
- 19. E. M. Levin and R. S. Roth, J. Res. Natl. Bur. Stand. A 68, 197 (1964).
- 20. F. Hund, Z. Anorg. Allg. Chem. 333, 248 (1964).